icon

Meet The 2018-2019 Zuckerman Israeli Postdoctoral Scholars

This program provides support to Israeli postdoctoral researchers who would like to study and do research in the U.S.
10 Israeli Postdoctoral scholars are entering the Zuckerman STEM Program in 2018. Here are their profiles.

DR. AYALA ALLON
Investigating filtering of irrelevant information in attentional settings and working memory with the hope of eventually improving the ability of students to deal with the incoming stimuli in our everyday crowded environment.

For her PhD in The School of Psychological Sciences at Tel-Aviv University, Dr. Allon investigated the filtering of irrelevant information in working memory using both behavioral and electrophysiological measures. At the Cognitive Control Lab in the Department of Psychology at Ohio State, she will investigate whether the same principles apply for filtering in attentional settings and in working memory, and the underlying processes of individual differences in filtering ability. Her research takes into consideration the field of education technology in Israel, since filtering irrelevant information has a key role in the learning process in schools, due to the difficulty of processing all the incoming stimuli in our crowded environment. Suppressing irrelevant information may also have implications for suppressing intrusive thoughts that contribute to anxiety disorders and depression. In the process of helping to set up the newly-founded Visual Working Memory Lab at TAU, Dr. Allon tried to find methods to organize her experimental data efficiently, and to reduce human error. With no previous programming experience, she acquired programming skills and developed a free open-source software R package called prepdat that was greatly appreciated by colleagues in her lab, and used today in other labs as well.

DR. MORAN BALAISH
Postdoc at the Massachusetts Institute of Technology
Developing solid-state ceramic-based memristors, materials which change their electrical resistance depending on their pre-history, or on the total current or charge that has passed through them, which have the potential to lead to neural-like information processing and storage.

Dr. Balaish received her PhD from the Grand Technion Energy Program. Her research focused on the development and study of a novel fluorocarbon air-cathode/non-aqueous electrolyte system for Li-O2 batteries.

 

At MIT, in the Department of Materials Science and Engineering, she will switch from liquid-based electrochemical energy storage to solid-state electrochemical information processing and storage. Building on the expertise she accumulated during her Ph.D. studies, she will also acquire skills to help her specialize in a relatively new field: solid-state ceramic-based memristors. These are materials which change their electrical resistance depending on their pre-history, or on the total current or charge that has passed through them. Developing reliable and cheap memristors could revolutionize the way computers operate, opening the way to neural-like information processing and storage.

 

As a Teaching Assistant at the Technion, she taught a General Chemistry course in the International School of Engineering. She mentored in diverse settings such as the President Peres Program for Future Scientists, SciTech (a science program for outstanding high-school students from around the world), and Select (a voluntary after-school scientific enrichment program for underprivileged students).

 

Moran is also a recipient of the Fulbright and Technion-MIT Postdoctoral Fellowships.

DR. RAN BEN BASAT
Postdoc at Harvard University
In the area of practical systems space of computer networks and big data/streaming algorithms, pushing the boundaries of what is considered feasible in network monitoring and security.

Dr. Ben Basat’s Ph.D. was from the Technion in Computer Science. He devised a method to identify networks that send an excessive amount of traffic. This capability is essential for mitigating Distributed Denial of Service (DDoS) attacks, which pose a real threat to the Internet environment. His solution is the first to allow networking devices to compute the attacking networks in real time and with provable guarantees. In another paper, he found a solution to the problem of load balancing by allowing a network switch to identify, in constant time and optimal space, the connections that require the most bandwidth. The best indicator of future bandwidth consumption is the recent past, and finding those that needed significant bandwidth and allocating them allows a substantial reduction in network bottlenecks. Dr. Ben Basat’s contributions are in the practical systems space of computer networks and big data/streaming algorithms – an area in which good academic candidates are lacking, as opposed to theoretical computer science. At Harvard, Dr. Ben Basat will work in the School of Engineering and Applied Sciences, where he hopes to push the boundaries of what is considered feasible in network monitoring and security. He will be collaborating with researchers in the Carnegie Mellon University CyLab.

Dr. Oren Ben Dor
Postdoc at Harvard University
Using nitrogen vacancy (NV) centers in diamonds as a way to investigate electronically-based processes in biology and biochemistry. In recent years, the capability to observe and precisely quantify interactions between atomically sized sensors and single molecules has been shown several times. This opened an avenue toward nano-scaled magnetic probing at room temperature. Dr. Ben Dor’s work can potentially shed new light some of nature’s hidden choices and preferences.

Dr. Oren Ben Dor earned his PhD in Applied Physics from the Hebrew University of Jerusalem. He will be conducting postdoctoral research at the Harvard Dept. of Physics, Harvard-Smithsonian Center for Astrophysics.

In his postdoctoral research, Dr. Ben Dor is using nitrogen vacancy (NV) centers in diamond to magnetically investigate charge transport through chiral molecules and to probe radicals in ambient conditions.

A direct observation on the interaction of such electronic targets and a nearby atomic sized NV sensor, could unravel naturally occurring biological processes on a molecular level.  Dr. Ben Dor’s work can potentially shed new light on some of nature’s choices and preferences.

His doctoral work focused on molecularly-based memory devices, from which he is already a co-author on 3 patents.

Dr. Ben Dor did his military service in the Israeli Air Force at an Aerial Command and Control center and is currently ranking Major (reserve). His unit, one of two in all of Israel, is responsible for any operational aerial offensive and defensive activities in the Israeli skies. He enjoys photography, and his photojournalistic display about a lieutenant colonel in the Israeli army struggling with ALS disease helped raise 100,000 ILS for ALS research.

DR. NAAMA KADMON HARPAZ
Postdoc at Harvard University
Modeling the joint dynamics of neuronal populations to reveal principles of motor control and motor learning.

Dr. Kadmon Harpaz earned her PhD in Life Sciences at the Department of Computer Science and Applied Mathematics at the Weizmann Institute of Science. She studies motor control, with a focus on the encoding of movement in the motor cortex. For her PhD, she studied the dynamics of neuronal populations and revealed principles of movement segmentation and movement invariances in complex arm motions. In the Dept. of Organismic and Evolutionary Biology at Harvard University, Dr. Kadmon Harpaz plans to study the neural circuits and neural dynamics underlying motor learning. At Weizmann, she helped construct a comprehensive statistics course to familiarize students with often-used statistics, and excite them about “tedious” topics. Now it is a mandatory course for Life Sciences at Weizmann, taken by more than 100 students each year. Dr. Kadmon Harpaz also coordinated the scientific side of an interdisciplinary German-Israeli project that provides free dance lessons to people with Parkinson’s disease. She bridged between the dancers and the academic collaborators and helped construct the classes with a scientific point-of-view. She comments that she received more than she gave, both as a person and as a scientist, including unique insights on motor disorders and control strategies that have steered her research questions ever since.

DR. NETALI MORGENSTERN-BEN BARUCH
Postdoc at Cincinnati Children’s Hospital Medical Center
Investigating an inhibitory receptor, ILT-2, to learn about its role in the type 2 inflammatory disease Eosinophilic esophagitis (EoE).

For her PhD in Immunology at Tel Aviv University, Dr. Morgenstern-Ben Baruch worked closely with researchers in the Division of Allergy and Immunology at Cincinnati Children’s Hospital Medical Center (CCHMC). The specific mouse strains and facilities she needed were not available in Israel, so she went to Cincinnati every 6 months to work on her project. She investigated Eosinophilic esophagitis (EoE), a type 2 inflammatory disease characterized by eating difficulties, vomiting, epigastric or chest pain, dysphagia, and food impaction. EoE has a unique histopathology—impaired mucosal integrity, eosinophilic inflammation, and other manifestations, which appear to be triggered by T cell populations in the esophageal tissue. Researchers have discovered a counter-regulatory system that can restrain immune cell action, called “inhibitory receptors.” For her current project, Dr. Morgenstern-Ben Baruch will be at the lab in Cincinnati full-time. She will investigate one such inhibitory receptor, Immunoglobulin-like transcript 2, or ILT-2, to learn more about its role in T cell expansion and activation in EoE patients. She hopes to devote her career to research into personalized medication of food-related disorders. During her PhD, Dr. Morgenstern-Ben Baruch served as a teaching assistant at the Sackler Medical School at Tel Aviv University.

DR. MICHAL POLONSKY
Postdoc at Caltech
Discovering cellular interactions and signaling pathways in human tissue samples to elucidate how the immune system interacts with tumor cells, holding the potential to aid in the design of improved cancer therapy protocols and more accurate diagnoses

Dr. Polonsky earned her PhD in Immunology at the Weizmann Institute. Her work is part of the emerging field of immunotherapy, or re-stimulating a patient’s immune system to attack cancerous cells. She investigated murine T cell differentiation at the single cell level, using a device she developed, that enables live cell imaging of primary T cells through arrays of thousands of microwells in which cells are trapped and can be monitored over time. Using her devices she revealed that T memory formation is influenced by local interactions between the activated cells. This information could lead to improved design of ex-vivo T cell cultures for adoptive immunotherapies.

For her postdoc at the Division of Biology and Biological Engineering at Caltech, she will broaden her approach, studying complex cellular processes within the context of the tissue in which they occur. Transitioning to working on human tissue samples, she will try to discover cellular interactions and signaling pathways to elucidate how the immune system interacts with tumor cells. This holds the potential to aid in the design of improved cancer therapy protocols and more accurate diagnoses.

DR. YANIV ROMANO
Postdoc at Stanford
Providing a fresh theoretical view of deep learning by using models in signal and image processing

Dr. Romano’s PhD at the Technion was in Electrical Engineering. At Stanford, in the Statistics Department, he plans to provide a fresh theoretical view of deep learning by using models in signal and image processing. He notes that while deep learning has made important developments possible including speech recognition, computer vision, and signal and image processing, a theoretical understanding of it is needed in order to ensure that it is used responsibly. Dr. Romano spent a summer at Google Research, interning as an Image Processing Algorithm Developer. The algorithm he developed for increasing the resolution of an image revolutionized the activity of his team and is being used extensively by Google. He is admired for being as comfortable with theory and mathematics as he is with practical engineering problems that lead to products.

DR. SHIRA WEINGARTEN-GABBAY
Postdoc at the Broad Institute of MIT and Harvard
Systematically studying viral immunogenicity, with the goal of identifying novel phenomenon affecting hundreds of viruses pathogenic to humans, in work that could be fundamental to rethinking vaccines and therapies to counteract viral threats.

Dr. Weingarten-Gabbay received her PhD in Life Sciences at the Weizmann Institute of Science in the Department of Computer Science and Applied Mathematics and the Department of Molecular Cell Biology. There, she developed high-throughput methods to systematically study gene expression regulation in the human genome and in viruses. In her work, she discovered and characterized thousands of genomic sequences that direct the ribosome to initiate the production of proteins in cells. Before her study, scientists had identified only a few dozen regions on various Messenger RNAs where such initiation occurred.

 

At the Broad Institute, Dr. Weingarten-Gabbay intends to employ innovative interdisciplinary approaches to research critical questions in virology. With the goal of identifying novel phenomenon affecting hundreds of viruses pathogenic to humans, she will develop experimental systems to assay multiple viruses instead of traditional approaches which study one virus at a time. Her work could be fundamental to rethinking vaccines and therapies to counteract viral threats.

 

Dr. Weingarten-Gabbay has taught science to gifted high school students from the Ethiopian community, young female students, and science teachers. In the Israeli Air Force, Lieutenant Weingarten-Gabbay was given a special honor for her quick action in preventing an incident of “friendly fire.”

Dr. Uri Weissbein
Postdoc at Harvard University Medical School
The vast majority of the mammalian genomes consists of non-coding sequences, half of which are derived from repetitive elements. Although their function is unknown few transcripts from repeat elements has been shown to participate in a key physiological process. Dr. Weissbein’s research aims to advance our understanding of repeat elements derived RNA in different biological contexts.

Dr. Uri Weissbein earned his PhD in Genetics at the Azrieli Center for Stem Cells and Genetic Research, Hebrew University of Jerusalem. He will be doing his postdoctoral work at Massachusetts General Hospital, Harvard Medical School.

In his PhD, Dr. Weissbein focused on identifying and examining the effects of genetic and epigenetic aberrations of human pluripotent stem cells. His research in this field has been published and has implications for stem cells and developmental research, as well as for regenerative medicine.

In his postdoc, Dr. Weissbein will be a Research Fellow both at Massachusetts General Hospital and at Harvard Medical School, in the department of molecular biology. He will work on the non-coding section of the mammalian genome, half of which is consist from repetitive elements, which can be transcribed into RNA. Although these transcripts have been called “junk” RNA, some of them are participating in key physiological responses. Dr. Weissbein’s research aims to advance our understanding of repeat elements derived RNA in different biological processes.

Dr. Weissbein is known as an excellent teacher, and was in charge of tutorials for first-year genetics and for the more advanced “Human Genetics” course. For his remarkable scientific achievements, as well as his teaching efforts, he received the prestigious 3-year Clore Fellowship, awarded to ten outstanding young Israeli scientists each year.